
A Primer on Mathematica

Jan M. Baetens

KERMIT, Department of Mathematical Modelling,

Statistics and Bioinformatics

March 23, 2015

Mathematica is a versatile, powerful application package for performing mathematics and

publishing mathematical results. It runs on most popular workstation operating systems,

including Microsoft Windows, Apple Macintosh OS, Linux, and other Unix-based systems.

Mathematica is used by scientists and engineers in disciplines ranging from astronomy to

zoology; typical applications include computational number theory, ecosystem modeling,

financial derivatives pricing, quantum computation, statistical analysis, and hundreds more.

For sure, the best way to understand Mathematica is to see it in action. In the remainder of

this computer laboratory, we briefly elaborate on its two main usages that are of importance

for the forthcoming laboratories on cellular automata:

• As an end user tool: Mathematica can be used to perform computations, either numeric

or symbolic, and the results can be visualized easily in two or three dimensions.

• As a programming tool: Mathematica provides a rich set of programming extensions

to its end-user language. Programming can be done in procedural, functional, or logic

(rule-based) style, or a mixture of all three.

1 The fundamentals

By means of so-called Mathematica notebooks, the Mathematica kernel may be used interac-

tively, just as a calculator, which is similar to using the Matlab command window. Commands

to be evaluated, such as 2+2, are entered directly into the notebook and can be evaluated

by pressing simultaneously the shift and enter keys, while a new line is started by pressing

the enter key. After executing this command In[X]:= appears in front of the original instruc-

tion, as well as the result of the computation, which is preceded by Out[X]=, such that the

notebook should now look like

In [1]:=2 + 2

Out[1]=4

where the number between square brackets indicates how many times instructions were

passed formerly to the Mathematica kernel. Of course, also longer expressions that span

several lines and which include comments, enclosed between (* *), can be entered. For

instance, entering

1

In [1]:=(5∗7−32/6)/4

(∗A comment∗)

yields, contrary to MATLAB, an exact outcome expressed in terms of the fraction 89/12. Its

capability of performing exact computations, rather than resorting to decimal approxima-

tions, is one of Mathematica’s strong points. Nonetheless, numerical approximations can

always be obtained by wrapping the N function around the outcome of the previous instruc-

tion, which can be referred to by using %, as follows:

In [1]:=N[%]

To exemplify Mathematica’s ability to perform exact calculations, try to evaluate 210000.

Although it must be acknowledged that MATLAB has numerous built-in functions, the num-

ber of implemented functions in MATLAB pales before the number of functions with which

Mathematica has been supplied. Functions are always capitalized, while their arguments are

enclosed in square brackets []. For instance, sin (ln(6)) can be calculated as

In [1]:=N[Sin [Log[6]]]

Out[1]=0.975687

Besides square brackets that are used to enclose a function’s arguments, also parentheses

() and braces {} have been assigned an important meaning in Mathematica. More specifi-

cally, parentheses are used in mathematical expressions, while braces are used to form lists,

which play a very important role in Mathematica since they constitute its fundamental data

structure. Because of that, many functions automatically act on the individual elements that

are contained in a list, for instance

In [1]:=Sin[{Pi , Pi /2}]

Out[1]={0,1}

whereas many other functions, among which Table and Range are probably the most note-

worthy within the framework of these notes, return lists. For instance, the Table command

has the syntax Table[expr,{x,xMin,xMax,step}], which evaluates expr at the values

xMin, xMin+step,. . . , xMin+nstep, where n is the largest integer so that xMin+nstep≤xMax,

and generates a list accordingly. This function can thus be used to create a list that contains

the third power of the first ten natural numbers

In [1]:=Table [k^3,{k,0 ,9 ,1}]

Out[1]={0, 1, 8, 27, 64, 125, 216, 343, 512, 729}

The Range command with syntax Range[min,max,step] produces a list of numbers

{min,min+step, . . . ,min+ nstep} ,

where n is the largest integer so that xMin+nstep≤xMax.

Similar to Matlab, a name can be assigned to scalars, vectors, and matrices but also to lists,

plots, etc. For instance, the previously created list {0, 1, 8, 27, 64, 125, 216, 343,

512, 729} could be assigned to a variable list, after which this variable can be used in

subsequent instructions,

In [1]:= l i s t=Table [k^3,{k,0 ,9 ,1}];

l i s t^2

Out[1]={0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441}

2

where a semi-colon is used to suppress the result of the Table command.

Analogously to the declaration of variables, Mathematica allows to define functions, such as

ƒ () = 3−1, that can be used throughout the remainder of the notebook or until it is cleared

using the Clear function:

In [1]:= f [x_]:=x^3−1;

f [3]

Out[1]=26

In [1]:= f [z]

Out[1]=z^3−1

In [1]:=Clear [f]

As an alternative to this intuitive manner of defining functions, also so-called pure functions

can be used. A pure function has the syntax expr &, where expr is a Mathematica expression

involving the # symbol, whereas the & operator tells Mathematica to treat expr as a function

with argument #. Hence, the function ƒ () = 3 − 1 can be defined alternatively as

In[1]:=#^3−1&[3]

Out[1]=26

where the function was evaluated for  = 3.

Mathematica has several commands for generating a random number or a list of random

numbers; RandomInteger and RandomReal are, perhaps, the most fundamental. RandomInteger

[{iMin,iMax},{n1, n2, ...}], respectively RandomReal[{iMin,iMax},{n1, n2, ...}], gen-

erates a list of {n1, n2, ...} random integer, respectively real, between iMin and iMax.

In [1]:=RandomInteger[{0 , 5}, 5]

Out[1]={3, 0, 4, 0, 4}

In [1]:=RandomReal[{0 , 5}, 5]

Out[1]={1.93451, 3.91802, 0.443231, 3.63488, 4.94378}

2 Visualization

Mathematica is a very powerful tool to create high-quality 2D/3D plots of both functions and

data. The most basic command to plot the former is the Plot command if functions of one

independent variables are at stake, or the Plot3D command if the considered function is

based upon two independent variables. For instance, a plot of both sin() and cos() can be

obtained as follows:

In [1]:=Plot [{Sin [x] , Cos[x]} , {x , −Pi , Pi }]

3

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

The counterpart of the Plot, respectively Plot3D, command to visualize data is the instruc-

tion ListPlot, respectively ListPlot3D. A plot of some points lying on the curve described

by the function ƒ () = 3 − 1 can be generated as follows:

In [1]:=data = Table[{x , x^3−1}, {x , −4, 4, 0.1}];

L is tP lot [data]

-4 -2 2 4

-60

-40

-20

20

40

60

Often, plots have to be combined in one figure. In Mathematica this can be accomplished by

using the Show function, which takes any number of plots and combines them in one figure.

For instance, the previous plot can be combined easily with a plot showing a line connecting

the dots as follows

In [1]:=data = Table[{x , x^3−1}, {x , −4, 4, 0.1}];

f1=ListP lot [data] ;

f2=ListLinePlot [data] ;

Show[f1 , f2]

-4 -2 2 4

-60

-40

-20

20

40

60

In order to customize the created plots, numereous options are available within any of the

aforementioned plot commands, of which Axeslabel, Frame, PlotLabel, PlotRange and

PlotStyle are probably of most interest within the framework of the forthcoming laborato-

ries. Their meaning can be checked in Mathematica’s outstanding documentation center.

In addition to the already discussed commands for visualizing data and functions, Mathemat-

ica has been supplied with a function that automatically generates a plot in which the values

4

in an array are shown in a discrete array of squares, and which uses, by default, a grayscale

output, in which zero values are shown white, and the maximum positive or negative value

is shown black:

In [1]:=ArrayPlot [RandomReal[{0,1}, {10, 20}]]

Assignment 2.1

1 Write a function that allows to calculate the -th Fibonacci number if you know that

F = F−1 + F−2 with F1 = F2 = 1. Then, use this function to create a list containing the

first thirty Fibonacci numbers, and plot this sequence. Hint: recursion.

2 Given the parameter representation of a circle with radius R,







 = R cosθ ,

y = R sinθ ,

where 0 ≤ θ ≤ 2π, formulate a function that generates a plot of a circle with a given

radius. Don’t forget to set appropriate axes and plot labels.

3 List manipulation

Since Mathematica’s fundamental data structure is a (nested) list, numerous functions are

available for manipulating lists. Suppose that a list containing ten randomly generated inte-

gers between zero and nine, for instance {7,6,1,0,6,8,9,7,0,0}, is assigned to a variable

list, then, several operations can be performed on this list:

1. the list may be sorted

In [1]:=Sort [l i s t]

Out[1]={0, 0, 0, 1, 6, 6, 7, 7, 8, 9}

2. the order of the list may be reversed

In [1]:=Reverse[l i s t]

Out[1]={0, 0, 7, 9, 8, 6, 0, 1, 6, 7}

3. elements may be dropped

5

In [1]:=Drop[l i s t ,2]

Out[1]={1, 0, 6, 8, 9, 7, 0, 0}

4. the list may be shifted

In [1]:=RotateLeft [l i s t ,2]

Out[1]={1, 0, 6, 8, 9, 7, 0, 0, 7, 6}

5. elements of the list may be accessed

In [1]:= l i s t [[2]]

Out[1]=6

In [1]:= l i s t [[2 ; ; 4]]

Out[1]={6, 1, 0}

In [1]:= l i s t [[{2 , 4}]]

Out[1]={6,0}

In [1]:=Last [l i s t]

Out[1]=0

6. the list may be partitioned in sublists

In [1]:= Part i t ion [l i s t ,2]

Out[1]={{7, 6}, {1, 0}, {6, 8}, {9, 7}, {0, 0}}

7. nested lists may be flattened

In [1]:=Flatten[%]

Out[1]={7, 6, 1, 0, 6, 8, 9, 7, 0, 0}

8. elements that fulfill particular criteria may be selected from the list

In [1]:=Select [l i s t ,#>3&]

Out[1]={7, 6, 6, 8, 9, 7}

where #>3& is a pure functioning returning True if its argument is larger than 3, and

False otherwise.

9. elements that fulfill particular criteria can be replaced using the replacement operator

/.

In [1]:= l i s t / . {7 −> 100}

Out[1]={100, 6, 1, 0, 6, 8, 9, 100, 0, 0}

In [1]:= l i s t / . {p_ / ; p > 3 −> 100}

Out[1]={100, 100, 1, 0, 100, 100, 100, 100, 0, 0}

where p_ is a so-called pattern matcher instruction that is commonly used in Mathemat-

ica. Extensive documentation on Mathematica’s pattern matching abilities is available

in the program’s documentation center.

As mentioned earlier, many functions automatically act on a list’s elements if applied to a

list. In Mathematica, such functions are referred to as listable functions. However, arbitrary

functions are not listable, i.e.

6

In [1]:=g[l i s t]

Out[1]=g[{7 , 6, 1, 0, 6, 8, 9, 7, 0, 0}]

any function can be mapped on a list using the Map function

In [1]:=Map[g, l i s t]

Out[1]={g[7] , g[6] , g[1] , g[0] , g[6] , g[8] , g[9] , g[7] , g[0] , g[0]}

Analogously, also pure functions can be mapped onto lists

In [1]:=Map[{#, # 3̂} &, l i s t]

Out[1]={{7, 343}, {6, 216}, {1, 1}, {0, 0}, {6, 216}, {8, 512}, {9, 729},

{7, 343}, {0, 0}, {0, 0}}

In Mathematica, all non-atomic expressions, that is all expressions other than numbers or

symbols, are represented by head[args], which becomes obvious if we request the internal

representation of a list using the function FullForm:

In [1]:= l i s t / / FullForm

Out[1]=Lis t [7 , 6, 1, 0, 6, 8, 9, 7, 0, 0]

showing that the head of a list is List, while the arguments are the list’s elements. The head

of an expression can be changed by using the Apply command. For example,

In [1]:=Apply[Plus , l i s t]

Out[1]=44

Numerous other functions manipulating lists can be retrieved in the documentation center.

Assignment 3.1

1 The flight of a propeller airplane that travels between Brussels and Saint-Petersburg

can be split up into four parts. Table 1 lists their duration, as well as the speed that is

maintained during every part.

Table 1. Duration of and speed during every flight part

Part 1 2 3 4

Speed (km h−1) 200 250 400 300

Duration (hours) 2 3 2 1

(a) Determine the distance traveled during each part of the flight.

(b) Calculate the total flight distance between Brussels and Saint-Petersburg.

2 Construct a function that takes as input an arbitrary list consisting of sublists of length

2, for example {{1,0},{1,9}}, and returns those sublists for which the second element

is greater than five.

7

4 Iteration

Given a particular initial value 0, it is sometimes needed to calculate the list

{0, ƒ (0), ƒ (ƒ (0)) , . . . , ƒ (. . . ƒ (0))} .

This can be accomplished easily using the NestList function

In [1]:=NestList [f ,x0,4]

Out[1]={x0, f [x0] , f [f [x0]] , f [f [f [x0]]] , f [f [f [f [x0]]]]}

Alternatively, the function Nest[f,x0,n] can be used if one is merely interested in the n-th

application of f

In [1]:=Nest[f ,x0,5]

Out[1]= f [f [f [f [f [x0]]]]]

Further, FoldList and Fold can be used to implement iteration.

5 Programming

Mathematica has a full-fledged, high-level programming language including loop constructs

such as For, Do and While, flow control devices such as If and Switch, and scoping con-

structs which allow you to declare local variables. Programming with Mathematica is a deep

subject and entire books are devoted to it. A word of warning is in order to experienced

programmers. The procedural programming paradigm used for many compiled languages,

such as C, C++, or Java, is emphatically not appropriate for a high-level language such as

Mathematica, since code written using the procedural approach generally executes much

slower than a task written following the functional programming approach. Yet, a detailed

elaboration of the functional programming paradigm is beyond the scope of these notes, and

procedural programming may still be adhered to.

For that purpose, the For function, syntax For[start,test,incr,body], which executes

start, then repeatedly evaluates body and incr until test fails to give True, as well as the

Do function, syntax Do[expr,i,imin, imax,step], which evaluates expr with the variable

i successively taking on the values imin through imax (in steps of size step), are of major

importance. Besides, conditional statements can be employed by using the If function, syn-

tax If[condition,t,f], which gives t if condition evaluates to True, and f if it evaluates

to False.

In order to exemplify the strengths of the functional programming paradigm, consider the

following piece of code for calculating the square of the first 20000 natural numbers that

should look familiar to people experienced with procedural programming in MATLAB:

In [1]:=squareList = {};

In [2]:=Timing[For [i=0, i<=20000, i++,

squareList = AppendTo[squareList , i ^2]]]

Out[2]={1.343, Null}

where 1.343 indicates that it Mathematica 1.343 seconds do perform the calculation.

The functional programmed counterpart of this task looks like

8

In [1]:=Timing[Range[20000]^2;]

Out[1]={8.34836∗10^−17, Null}

Two major conclusions can be drawn upon the comparison of both programming paradigms.

First, the functional counterpart is considerably faster, and, second, compared to the proce-

dural approach, the functional approach is much shorter and more readable. In fact, it turns

out that these conclusions are valid for most computational tasks.

6 Importing and exporting

Typically, technical computing applications are well suited for performing computations, but

have major difficulties in importing or exporting data, figures, or animations, that were cre-

ated by or must be used in other applications. In contrast, Mathematica has been supplied

with extensive and easy-to-use importing and exporting capabilities, which can be called us-

ing the functions Import and Export. For instance, a .txt-file containing a list of data can be

imported as follows:

In [1]:=data=ToExpression[Import [" f i l e . txt " , " L is t "]] ;

where the function ToExpression is wrapped around the Import function in order to convert

the strings that are contained in the text file to numbers, which can then be used in sub-

sequent Mathematica instructions. Analogously, our exemplary list {7,6,1,0,6,8,9,7,0,0}

can be exported to a .txt-file:

In [1]:=data=Export [" f i l e . txt " , l i s t] ;

The list of data formats that Mathematica can handle is almost endless, and contains, among

others, audio, binary, database, document, multimedia, raster, vector and XML formats.

Assignment 6.1

1 Write a function that determines the largest n ∈ N for which it holds that

n
∑

=0

 ≤ Q ,

where Q ∈ N. Test this function for Q = 750.

2 Write a function that evaluates the trace of a square matrix, defined as the sum of the

diagonal elements. Your function should check the input structure and print an error

message if the input is not a square matrix. Hint: the function Dimensions could be of

use.

3 This assignment aims at constructing and visualizing the Mandelbrot set. Mathemati-

cally, the Mandelbrot set can be defined as the set of complex values c for which the

iteration of the complex quadratic polynomial zn+1 = z2
n
+ c with initial condition z0 = 0

produces a sequence for which |zn| does not approach infinity as n grows infinitely large.

It can be shown that this sequence will escape to infinity as soon as there is a zε for

which |zε| > 2, where ε is the escape rate, i.e. the number of iterations needed to obtain

|zε| > 2.

9

(a) Write a function that calculates ln(ε + 1) for a given c. Hence, this function should

have two input arguments and it should yield the number of iterations needed to

obtain |zn| > 2 or the maximum number of iterations that are allowed computed for

points which either escape very slowly or simply orbit the origin. In the framework

of this assignment, the maximum number of iterations is 50.

(b) Plot ln(ε + 1), for Re(c) ∈ [−2,1.2] and m(c) ∈ [−1.4,1.4], by means of the func-

tion DensityPlot, for which you provide the options PlotPoints->100, Mesh->False,

AspectRatio->Automatic, ColorFunction->Hue. Be aware that it takes a while

to render the plot.

(c) Explore an area with an increasing resolution and see what happens.

10

